| Title | Link |
|---|---|
| Decision tree analysis | LINK |
| Decision tree and random forest | LINK |
| How to Handle Imbalanced Classes in Machine Learning(Pre-data processing) | LINK |
scikit-learn
| Title | Link |
|---|---|
| RandomForestClassifier parameters | LINK |
| GridSearchCV | LINK |
| make_classification(Data generation function) | LINK |
| .predict_proba(Show the probability of being classified in class) | LINK |
| feature_importances_(Evaluate the importance of features in a random forest) | LINK |
KERAS
| Title | Link |
|---|---|
| mnist.load_data()MNIST (Handwritten digit database) | LINK |
| to_categorical(Example:0->[0,0,0],1->[0,1,0],2->[0,0,1]Conversion to) | LINK |
| Sequential model | LINK |
| Title | Link |
|---|---|
| Cross-validation(cross validation) | LINK |
| Hyperparameters | LINK |
| ROC,ACU | LINK |
| Feature value | LINK |
| Title | Link |
|---|---|
| scikit-Generate a confusion matrix with learn and calculate the precision rate, recall rate, F1 value, etc. | LINK |
Recommended Posts